

Computer Science: Specifications Booklet 1

COMPUTER SCIENCE

Specifications booklet
September 2007

This booklet supplements the Computer Science course
and will be reviewed as required.

It is to be used in conjunction with the:
• course syllabus
• scope and sequence document.

180479_9.DOC

Computer Science: Specifications Booklet 2

Computer Science: Specifications Booklet 3

Introduction
The elaborations in this booklet are to be used in conjunction with the syllabus.

Content weightings
The following content weighting ranges will guide the development of the stage 2 and stage 3
examinations.

Components 15–20%
Design, development and management 15–20%
Tools 60–70%

Unit 2A—number systems and encoding
(Refer to syllabus content on p. 14)

Number systems
Students should recognise decimal, binary and hexadecimal numbers and explain their purpose and
use in computing. Calculators can be used for all conversions, however students should be able to
demonstrate the conversion from decimal to binary using one of the methods shown below. A
calculator can be used to verify the answer.

Decimal to binary calculation
Division method

Divide Technique
2 197

 98 1
 49 0
 24 1
 12 0
 6 0
 3 0
 1 1
 0 1

Subtraction method

 197 Remainder
128 197-128 69 1

64 =69-64 5 1
32 0
16 0
8 0
4 =5-4 1 1
2 0
1 =1-1 0 1

Alternative subtraction method

27 26 25 24 23 22 21 20
128 64 32 16 8 4 2 1

197-128 69-64 5-4 1-1
1 1 0 0 0 1 0 1

Encoding
Students should be able to explain the limitations of ASCII (American Standard Code for Information
Interchange) as an 8 bit coding scheme and the benefits of Unicode as a 16 bit coding scheme.
Students should be able to use an ASCII lookup table. Any required tables will be provided in an
exam question.

Computer Science: Specifications Booklet 4

Unit 2A/3A—Systems Development Life Cycle (SDLC)
(Refer to syllabus content on p. 14 and p. 18)

Stages of the systems development life cycle (SDLC)

Preliminary analysis
problem definition
feasibility study

Analysis
model of current system
requirements of new system

Design
logical and physical design

Development
hardware and software acquisition
construction and testing

Implementation
change-over methods: direct cut, phased, pilot, parallel

Evaluation and maintenance
performance evaluation
fault finding and correction

Unit 2B—TCP/IP model
(Refer to syllabus content on p. 16)

Unit 2B provides an overview of the 4 layer TCP/IP model, also known as the DoD (Department of
Defense) model, to provide an understanding of the level at which each network device operates.

Unit 3B—network interconnectivity (OSI model, TCP/IP
model)
(Refer to syllabus content on p. 20)

Unit 3B builds on the overview of the 4 layer TCP/IP model, also known as the DoD model, and
provides an overview of the 7 layer OSI model. Comparisons will be made between the 4 layer
TCP/IP model and the 7 layer OSI model.

Computer Science: Specifications Booklet 5

Tools introduction
The following pages elaborate the use of tools at the different stages and provide standard
representations for the design tools.

Units 1A, 2A, 3A programming
Overview
Units 1A, 2A and 3A progressively develop knowledge about computer languages and skills in
designing, creating, modifying, testing, evaluating and documenting programs.

Unit 1A (Refer to syllabus content on p. 10)
Program components require students to be able to identify inputs, processing and outputs. IPO
charts will be used to organise this and interface designs will be planned.

When using a simple programming language, students will not be required to write code. They will
create programs by recording macros or using interactive drag and drop languages. They will then
identify the components that have been created and inspect and edit the code.

Suggested programming languages for Unit 1A are Word macros–VBA, Scratch, Alice

Unit 2A (Refer to syllabus content on p. 14)
Program components and constructs focuses on simple algorithms using sequence, selection
and repetition. These algorithms will be developed using flow charts (a graphical method) and
pseudocode (structured English).

Students will write, compile, test and debug code using procedural type programming. It is
recommended that the language chosen includes a visual interface.

Unit 3A (Refer to syllabus content on p. 18)
Programing constructs and structured programming extend to more complex algorithms using
modularisation and parameter passing, and one-dimensional arrays. These algorithms will be
developed using pseudocode. Students may continue to use flow charts, but external exams
questions will represent algorithms in pseudocode.

Students will write, compile, test and debug code using procedural type programming. It is
recommended that the language chosen includes a visual interface.

Computer Science: Specifications Booklet 6

Unit 1A—simple programming language
(Refer to syllabus content on p. 10)

Simple programming languages may involve:
1. creating programs through the use of either:

 recording macros in application programs such as Word or Excel OR
 interactive drag and drop programs such as Scratch.

2. identifying components of the program by either:
 inspecting code syntax for macros and making changes such as the size or font OR
 recognising and using drag and drop components.

Program components may include:

Objects Items that a user can manipulate as a single unit to perform a task
Properties Attributes of an object
Methods Behaviours that a particular object can have
Controls Sequence, selection, repetition

Program design using Input, Processing, Output (IPO) charts
There are a number of ways that IPO charts can be set out, but the simple format below will be
adopted that requires the student to identify any inputs, the processing that will take place and the
outputs required.

Input Processing Output
• number of

hours worked
• hourly rate
• tax rate

• calculate gross pay
• calculate tax payable
• calculate nett pay

• gross pay
• tax payable
• nett pay

Word Macros
Tutorial on creating and editing Word Macros–http://www.officeletter.com/favtips/wordmacros.html

Scratch programming language
Freeware, downloadable from http://scratch.mit.edu/
Getting Started Guide, Project Ideas and online help available.
Simple to use drag and drop programming that introduces programming constructs and components.
Tutorials and information on using Scratch available from kidsprogramming.pbwiki.com

Alice programming language
Freeware, downloadable from http://www.alice.org/
Demonstration videos and tutorials available.
Simple to use drag and drop programming that introduces programming constructs and components.

Computer Science: Specifications Booklet 7

Unit 2A—program components and simple algorithms
(Refer to syllabus content on p. 14)

Flow chart symbols and pseudocode
Symbol Meaning

Terminal: begin and end

Input or output

Process: the description of an action or process

Decision: one line comes in at the top and two lines
leave it

Sub-program or module: a portion of code that
performs a particular task

Flow lines do not need an arrow if the direction of flow is from top to bottom or from left to right. In the
sequence example below there are no arrows on the flow lines as the flow of control is from top to
bottom.

Sequence
The instructions are processed in order.

Flowchart Pseudocode

Input(Num1)
Input(Num2)
Product ← Num1 * Num2
Output(Product)

Read and Write can be used in place of Input and Output
Example:

Read(Num1)
Read(Num2)
Product ← Num1 * Num2

Enter Num1

Enter Num2

Product = Num1 * Num

End

Print Product

Begin

Computer Science: Specifications Booklet 8

Write(Product)

Selection
A condition is tested to determine which branch or path is followed.

Flowchart Pseudocode

One way selection
 If condition then

Input(Age)
If Age >= 18 then

Output(“Entrance allowed.”)
End If

Two-way selection

 If condition then .. else

Input(Age)
If (Age >= 16) and (Age <= 65) then

 Price ← 35
 Else

 Price ← 20
 End If
Output(“The cost will be $” Price)

Enter Age

Age >=16 and
Age <= 65?

true

Begin

End

false

Set Price to 35 Set Price to 20

Print “The cost
will be $” Price

Enter Age

Age >=18
true

Print “Entrance
allowed.”

Begin

End

false

Computer Science: Specifications Booklet 9

Selection (continued)
A condition is tested to determine which branch or path is followed.

Flowchart Pseudocode

 Multi way selection (Case)

Input(Age)
Case Age of

< 4 : Fare 0
< 16 : Fare 5
< 60 : Fare 10
>= 60 : Fare 7

End Case
Output(“The cost of your trip will be $” Fare)

Enter Age

CASE
Age

Begin

End

<4

Set Fare to 0

Print “The cost of your
trip will be $” Fare

Set Fare to 5 Set Fare to 10 Set Fare to 7

<16 <60 >=60

Computer Science: Specifications Booklet 10

Repetition also commonly called iteration or looping
Repeating an action or series of actions a number of times.

Flow chart Pseudocode
FOR: Fixed or counted loop
This loops or repeats a counted or fixed number of times.
The number of repetitions is known when the loop begins.

TotalScore ← 0
 For Batsman 1 to 11 do

Input(Score)
TotalScore TotalScore + Score

EndFor

OR

TotalScore ← 0
 For Batsman 1 to 11

Input(Score)
TotalScore TotalScore + Score

Next Batsman

Set TotalScore to 0

Begin

End

Enter Score

Set Batsman to 1

Batsman > 11

Add Score to
TotalScore

false

true

Increase Batsman
by 1

Computer Science: Specifications Booklet 11

While: test first or pre-test loop
This loops a variable number of times.
The number of repetitions is not known when the loop begins. This is tested before the loop is
entered—test first—it is possible that the loop is executed zero times.

TotalScore ← 0
Continue ← “Y”
While Continue = “Y”

Input(Score)
TotalScore TotalScore + Score
Input(Continue)

EndWhile

Set TotalScore to 0

Begin

End

Enter Score

Set Continue to “Y”

Continue =
“Y”

Add Score to
TotalScore

true

false

Enter Continue

Computer Science: Specifications Booklet 12

Repeat ... Until: test last of post-test loop
This loops a variable number of times. The number of repetitions is not known when the loop
begins. This is tested at the end of the loop—test last—and therefore must be executed at least
once.

Repeat

Output(“Enter your age in years.”)
Input(Age)

Until (Age > 0) and (Age <120)
Output(“Valid age entered.”)

Modules
In Unit 2A students design and write code segments that may be modularised, but they will not be
required to pass parameters between modules

Begin

End

Print “Enter your
age in years”

(Age > 0) and
(Age <120)

true

false

Enter Age

Print “Valid age
entered.”

Computer Science: Specifications Booklet 13

Unit 2A—trace tables for desk checking testing and
debugging
(Refer to syllabus content on p. 14)

The correctness of an algorithm should be checked before coding begins. Trace tables provide a
formal method for tracing the logic of an algorithm.

A set of data values (test data) is chosen to test all paths within the algorithm.

All variables, constants and formal parameter values need to be represented.

A desk check of the following pseudocode using the data values [2,3,6,5,7,999].

Module DisplayLargestNumber
1 Largest 0
2 Input(Number)
3 Repeat
4 If Number > Largest then
5 Largest Number
6 End If
7 Input(Number)
8 Until (Number = 999)
9 Output(“The largest number is “, Largest)

Expanded method

Line Largest Number Repeat If output
1 0
2 2
4 TRUE
5 2
7 3
8 FALSE
4 TRUE
5 3
7 6
8 FALSE
4 TRUE
5 6
7 5
8 FALSE
4 FALSE
7 7
8 FALSE
4 TRUE
5 7
7 999
8 TRUE
9 The largest number is 7

Lines 3 to 8 are a Repeat—Until loop, line 8 is the condition (test LAST) which will repeat
the loop until this is TRUE.

Lines 4 to 6 are an If statement. If the condition in line 4 is TRUE, then line 5 is
processed, otherwise line 5 is skipped.

Computer Science: Specifications Booklet 14

Unit 3A—program constructs and structured
programming
(Refer to syllabus content on p. 18)

Pseudocode concepts for program design from Unit 2A are also required for Unit 3A.

Structured programming using modularisation and parameter passing
In Unit 3A students design and write modularised code segments that pass parameters between the
modules.

Module example
 Module CalcPay (Rate, Hours, Pay)

 Pay ← Rate * Hours
 End CalcPay

Calling the module

Module Main
Rate ← 25.5
Input(Hours)
Call CalcPay (Rate, Hours, Pay)
GrossPay ← Bonus + Pay
Output(GrossPay)

End Main

The Rate and Hours parameters are sent to the module CalcPay and the calculated Pay is returned
through the Pay parameter.

Rate and Hours would be pass by value parameters that receive a value, but do not return a changed
value.

Pay would be a pass by reference (variable) parameter as it returns a value to the calling module.

Function example

Function Pay (Rate, Hours)
Pay ← Rate * Hours

End Function

Using the function in a calculation and as an output

Module Main
Rate ← 25.5
Input(Hours)
Output(Pay(Rate, Hours)
GrossPay ← Bonus + Pay(Rate, Hours)
Output(GrossPay)

End Main

A function is a special type of module that:
• receives data through its parameters and returns a single value through the function name. In the

following example values are received through rate and hours and the calculated result is returned
through the function name Pay

• has no input or output statements
• is used in a calculation, assignment statement or output statement.

Computer Science: Specifications Booklet 15

Unit 3A—Structured programming using structure charts
(Refer to syllabus content on p. 18)

Unit 3A structure charts represent modules graphically. The data parameters passed between
modules are included.

Rate and hours are value
parameters that send a value
to the module, but do not return
any value.

Two-way parameters pay and
tax would be var or variable
parameters in Pascal/Delphi or
by Ref parameters in Visual
Basic) show that any changes
made to the values are passed
back to the calling module.

Fundamentals of data structures—arrays (one-dimensional) and records
Array pseudocode examples
Initialising an array with zeros

For Student ← 1 to 25
 MarksList[Student] ← 0
End for

Reading data into an array

For Student ← 1 to 25
 Input(MarksList[Student])
End for

Displaying all the data from an array

For Student ← 1 to 25
 Output(MarksList[Student])
End for

Record pseudocode examples
Record structure

StudentData
 Firsname
 Surname
 DateOfBirth
 Phone

Reading data into the student record
Input(StudentData.Firstname)
Input(StudentData.Surname)
Input(StudentData.DateOfBirth)
Input(StudentData.Phone)

Displaying data from the student record

Output(StudentData.Firstname)
Output (StudentData.Surname)
Output (StudentData.DateOfBirth)
Output (StudentData.Phone)

DeterminePay

CalcTax CalcPay

rate, hours pay

tax, pay

tax, pay

Computer Science: Specifications Booklet 16

Unit 3A—Testing and debugging
(Refer to syllabus content on p. 18)

The correctness of an algorithm should be checked before coding begins. Trace tables provide a
formal method for tracing the logic of an algorithm. A set of data values (test data) is chosen to test all
paths within the algorithm.
• All variables, constants and formal parameter values need to be represented.
• Any data structure (such as an array or record) should be represented separately to the table of

simple data types, so that changing values can be represented more easily.

Condensed method
In Unit 3A this condensed method is more compact for longer more complex algorithms or where
there is more test data, but it can be more difficult for students to use.

A desk check of the following pseudocode using the data values [2,3,6,5,7,-10,20,3,999].

Module DisplayLargestNumber
Largest 0
Input(Number)
Repeat
 If Number > Largest then
 Largest Number
 End if
 Input(Number)
 Output(“Largest so far is “, Largest)
Until (Number = 999)
Output(“The largest number of all is “, Largest)

Largest Number Number > Largest Number = 999 output
0 2 2 > 0 is T
2 3 3 > 2 is T F Largest so far is 2
3 6 6 > 3 is T F Largest so far is 3
6 5 5 > 6 is F F Largest so far is 6
6 7 7 > 6 is T F Largest so far is 6
7 -10 -10 > 7 is F F Largest so far is 7
7 20 20 > 7 is T F Largest so far is 7
20 3 3 > 20 is F F Largest so far is 20
20 999 T Largest so far is 20
 The largest number of all is 20

Computer Science: Specifications Booklet 17

Unit 2A—Data flow diagrams
(Refer to syllabus content on p. 15)

These conventions are based on the De Marko/Yourdan symbols.

Context diagram
The context diagram, also called level zero, is the top level of a set of hierarchically related diagrams
that form a set that decomposes a system into successively finer detail with each move down the
diagram set. This diagram represents the system being modelled as a single circle interacting with
external entities. The emphasis of this diagram is to identify the boundary of the system. The name
inside the single circle representing the system should describe the system being modelled. The
symbols used are:

the system is represented as a
circle

represents the flow of data
between the system and the
external entities

an organisation or person that
provides data to the system or
receives data from the system

Context diagram for social club system

The circle is a representation of the system boundary. The system boundary defines what is inside
and outside the system.

Deciding on which side objects lie is an important consideration. Is a particular object part of the
system being considered, and hence invisible inside the circle, or is it really outside the system’s
considerations and therefore an external item supplying data, or taking information from the system?

Notice that data stores or files must never appear in a context diagram. They are part of the system
and are therefore inside the circle.

SOCIAL
CLUB

SYSTEM

MEMBER

SOCIAL CLUB
COMMITTEE

LOCAL

NEWSPAPER

member_details

details_confirmation

coming_activity_details

planned_activity_details

advertisement_details

System

EXTERNAL

ENTITY

Computer Science: Specifications Booklet 18

 External entities: (sources or sinks): These are any organisation or person

that provides data to the system or receives data from the system.

 They exist outside of the system.
 An external entity can be both a source and a sink.
 They should be named in the singular as a person, place or thing.

 Processes: These are actions taking place that transform inputs into
outputs.

 They must always have at least one inflow and one outflow.
 They should be named with an active verb associated with a noun or

very short phrases of that type, reflecting what transformation the
process is making to the data passing through it.

 The numbering of a process does not indicate timing or sequence.
 The data flowing out of a process should differ from that going in. (e.g.

payment_cheque_details goes in and cancelled_cheque_details
comes out of an enter cheque transaction process.)

student timetables

Data stores: (files, repositories of data or temporary data stores) These
store data used within a system.

 They cannot transform data, and must usually contain at least one
inflow and one outflow.

 A data store’s identifier should be a noun reflecting the data it contains
and not its physical nature. (e.g. customer details NOT sorted magnetic
tape file).

 Data flows: These vectors indicate the data being transferred (not physical
objects), e.g. invoice_details not invoice.

 They should connect at each end directly to their source and destination
with only one arrowhead.

Sometimes in order to simplify a diagram, an entity or data store requires duplication. Each of the
duplicated objects should contain a diagonal line(s) in the bottom corner as shown below:

1
Update

pay details

LIBRARY
DATABASE

Timetables Bank Timetables Bank

Computer Science: Specifications Booklet 19

Levelled data flow diagrams
A level one data flow diagram should show all external entities. The processes are numbered, but do
not indicate sequence.

In the level one data flow diagram, the same total number of inflows and outflows (and external
entities) must exist as in the context diagram.

Top level or level one DFD for the social club system

Any similar information that data flows carry are resolved in the data dictionary. The number of
processes that are in the level one data flow diagram depend on the number of major processes
described.

1
Add new
member

MEMBER

SOCIAL CLUB
COMMITTEE

LOCAL

NEWSPAPER

member_details

details_confirmation

printed_activity_descriptions

planned_activity_details

advertisement_details

2
Add activity

4
Create

advertisement

3
Compile
monthly

newsletter

new_member_details

all_member_details

new_planned_activities

upcoming_activities_details

upcoming_activities_details

photos photos

Members

Images

Activities

Computer Science: Specifications Booklet 20

Unit 3A-levelled data flow diagrams
(Refer to syllabus content on p. 18)

Unit 3A build on from Unit 2A data flow diagrams.

Level 2 DFD for Process 3.0 Compile monthly newsletter
In the level 2 data flow diagram, the same total number of inflows and outflows must exist as in the
level 1diagram. External entities are not shown.

Process 3 can be expanded to show more detail.

3.1
Sort activities

printed_activity_descriptions

3.3
Finalise

newsletters 3.2
Compile and

format activities
descriptions

upcoming_activities_details

photos

sorted_activities_details

formatted_activity_descriptions

Images

Members

all_member_details

Activities

Computer Science: Specifications Booklet 21

Units 1A, 2A, 3A databases
Units 1A, 2A and 3A progressively develop knowledge and skills in designing and developing
databases.

Unit 1B (Refer to syllabus content on p. 12)
Components of a single table database—students will identify the fields and data types required to
create a single table. Planning for the table structures will not require the use of a diagrammatic tool.

Students will apply skills in a single table database application to create a table by defining the
fields with their data types and entering records of data into the table. These table records will be
manipulated by sorting and filtering on various fields. Forms will be created to provide a user interface
to the data. Simple queries and reports will extract and present data.

Unit 2B (Refer to syllabus content on p. 16)
Unit 2B focuses on the design and development of 2 or 3 table relational databases requiring one to
many (1:M) relationships. Entitiy Relationship Diagrams will be used to represent these designs.

A relational database application will be used to implement:

Tables—define field names; set data types, field formats, default values, primary keys,
validation rules and validation text, sort and filter on selected fields
Relationships—link tables through primary and foreign keys; enforce referential integrity
Queries—create single and multiple table queries; use relational operators (= > >= < <=);
use logical operators (and, or, not); use wild cards (* ?)
Forms—create forms for displaying and entering data; create a database navigation
(switchboard) form
Reports—create a report based on a table or a query.

Unit 3B (Refer to syllabus content on p. 20)
Unit 3B focuses on the conceptual planning of a larger multiple table relational database using
normalisation or Entity Relationship Diagrams.

Unit 3B builds on the Unit 2B relational database application skills.

Relationships—set cascade updates and deletes
Queries—create parameter, calculated field concatenated field, aggregation, append, update,
delete and make table queries.

Computer Science: Specifications Booklet 22

Unit 2B—introduction to entity relationship diagrams
(Refer to syllabus content on p. 16)
Students represent 1:M relationships for 2 or 3 linked entities.

Symbols and characteristics

 Entities are objects, people or things about which data is kept. An entity
has attributes which are its descriptive properties.

 Relationships are the links that exist between entities, and can be of four
forms (or degrees, or cardinality): one-to-one (1:1), one-to-many (1:N or
1:M,), many-to-one (N:1 or M:1) and many-to-many (M:N). The relationship
type is written in the diamond, and the relationship degree (or cardinality) is
written at the extremities of the connectors to the entities.

Doctor’s name

Surgery address

Phone number

Attributes are written either next to or beneath the entity to which they
belong. The primary key can be underlined OR identified by the letters 'PK”.
Foreign keys should be identified by the letters “FK”.

Sample ERDs

The above example shows a composite primary key for the driver.

M treats 1

Doctor
Doctor#
Doctor’s name
Surgery Address

Doctor

FK

FK

Computer Science: Specifications Booklet 23

Unit 3B—entity relationship diagrams
(Refer to syllabus content on p. 21)

Unit 3B builds on from Unit 2A.

Students use 1:1, 1:M and resolve M:N relationships to design databases with up to 7 entities.

Example
Many pupils can attend many classes. The following diagram describes this relationship.

To create a model that can be implemented in a relational database the above Many to Many (M:N or
M:M) relationship needs to be resolved by introducing an intersecting entity as shown below.
The intersecting Place entity has a composite primary key, but PlaceID field could have been created
to create a single field primary key instead of having a composite primary key.

Many authors can write many books. The following diagram describes this relationship.

All M:N relationships resolve to 1:N M:1 format.

FK

Computer Science: Specifications Booklet 24

Computer Science: Specifications Booklet 25

Unit 3B—normalisation to third normal form (3NF)
(Refer to syllabus content on p. 21)

Students normalise a set of unnormalised data to 3NF.

Normalisation is the process of splitting (decomposing) a set of data into a number of smaller sets of
data suitable for implementation in a relational database.

Steps for splitting (decomposing) a relation into smaller relations

1. Identify the object fields and create a separate relation for it.
2. Create or identify a primary key for that object/relation.
3. Create a link field in the relation that you have removed the object from.

Unnormalised data (traditionally non-computerised data held in a card index file)
• Data contains repeated fields such as game 1, game 2 etc.
• Non-atomic fields such as more than one item of data in each cell/location e.g. game date, time

and ground number in the same cell.
• No key fields.
• Redundant (unnecessary repetition) of data.

Example of an unnormalised Team Card

Game
1

Game
2

Game
3

Game
4

Game
5

Game
6

Team:
 Bombers

Age Group:
 Under 15

5th May
 2:30pm,
Grnd 43

12th May
11:00a

m
Grnd 22

19th May
9:30am
Grnd
101

26th May
2:30pm
Grnd 43

2nd June
11:00a

m
Grnd 22

9th June
9:30am
Grnd 43

Coach:
Jason Finch, 13 Green St, Wembley. 04101 23456

Computer Science: Specifications Booklet 26

First Normal Form (1NF)—usually a flat file or single table
• Fields holds only atomic values, that is the intersection of each row and column contains only one

value.
• Redundant (unnecessary repetition) of data in the records
• No key fields

Example of the fields for PlayerTeamList (in 1NF)

PlayerTeamList

PlayerSName, PlayerFName, DOB, Phone, TeamCode, TeamName, AgeGroup,
HomeGroundCode, HomeGroundName, HomeGroundLocation, HomeGroundPhone

Second Normal Form (2NF)—transitive dependencies exist
All non-key fields are fully functionally dependent on the primary key, but transitive dependencies still
exist.

In the example below, Team is still in 2NF.
• Location of the home ground is only partially dependent on the PK TeamCode as it is also

dependent on the HomeGroundName or
• Location of the home ground is dependent on the HomeGroundCode as well as the TeamCode

field that is, the field dependency is transitive, it has to pass through the HomeGroundName field to
get to its dependency on the TeamCode.

Example of 2NF

PlayerTeamList

fPlayerID, fTeamCode, Year, CurrentPlayer
Player

PlayerID, PlayerSName, PlayerFName, DOB, Phone
Team

TeamCode, TeamName, AgeGroup, HomeGroundCode, HomeGroundName,
HomeGroundLocation, HomeGroundPhone

Third Normal Form (3NF)
All transitive dependencies have been removed so that all non-key attributes are fully functionally
dependent only on the primary key.

Example of 3NF

PlayerTeamList
fPlayerID, fTeamCode, Year, CurrentPlayer

Player
PlayerID, PlayerSName, PlayerFName, DOB, Phone

Team
TeamCode, TeamName, AgeGroup, fHomeGroundID

HomeGround
HomeGroundCode, HomeGroundName, HomeGroundLocation, HomeGroundPhone

Computer Science: Specifications Booklet 27

